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The dynamics of spinodal decomposition in confined geometries is studied using molecular-dynamics
simulations and the numerical integration of the exact equation of motion of soft Ising spins undergoing
Kawasaki dynamics. We argue that, as long as there is a conservation law for the two species and a pla-
nar heterogenity is present in the initial conditions, composition waves with a wave vector normal to the
heterogeneity should be observed. Our results indicate that hydrodynamic modes play a role in deter-

mining the dynamics.

PACS number(s): 61.25.Hq, 05.70.Fh, 64.75.+g

Recently Jones et al. [1] have studied the spinodal
decomposition [2] of a polymer-melt-blend film with a
free planar surface. They found that the presence of the
surface resulted in composition waves (regions rich in one
phase separated by regions rich in the other) with a wave
vector normal to the surface. On the theoretical side,
Ball and Essery (BE) [3] and Puri and Binder (PB) [4]
have numerically solved the time-independent Ginzburg-
Landau equation and have obtained surface-directed spi-
nodal decomposition. The equations of BE involve two
(unequal) temperatures, one of which fixes the coefficients
of the Ginzburg-Landau free energy and thence the shape
of the potential, whereas the other controls the strength
of the noise. PB start with the continuum equations of
Binder and Frisch [5], which are designed to produce the
correct mean-field transition temperature, carry out some
simplifications, and discretize the resulting equations.
The BE and PB approaches start with continuum equa-
tions valid near the critical temperature. This is a matter
of some concern since spinodal decomposition is
governed by a T =0 fixed point [6]. The PB mean-field
approach does not incorporate noise; the noise term of
BE does not ensure the proper approach to equilibrium,
nor do their boundary conditions hold in average—a re-
quirement recently stressed by Diehl and Janssen [5].

In this Rapid Communication, we summarize the re-
sults of extensive studies of the effect of a surface on the
spinodal decomposition process following a critical
quench using several complementary techniques. Our
focus is on the phase separation in a direction normal to
the surface. We have carried out molecular-dynamics
(MD) simulations of the phase separation of two immisci-
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ble Lennard-Jones fluids in the presence of molecular
walls. These simulations incorporate hydrodynamic
effects and the wetting properties of the walls can be con-
trolled. Second, we carryout numerical integration of the
equations of motion for an Ising spin system on a discrete
lattice employing Kawasaki spin-exchange dynamics.
These ab initio equations for a continuum field on a
discrete lattice are exact at all temperatures, they incorp-
orate the noise correctly, and they treat the boundary
effects properly. They reduce to a mean-field approach
on turning off the noise. Both cases yield composition
waves—however, the time dependence of the wave vec-
tor of the Ising system (that does not include hydro-
dynamic effects) is different from that found in the MD
simulations and experiment, which are in accord with
each other, pointing to the importance of hydrodynamic
modes even in confined geometries. We show analytically
(both within a linearized approximation and taking into
account the nonlinearities approximately within a
Berlin-Kac [7] approach), and have confirmed numerical-
ly, that composition waves are produced even in the ab-
sence of a boundary as long as there is a planar inhomo-
geneity in the initial conditions and the conservation of
the two species is maintained.

Three-dimensional systems of Lennard-Jones (LJ) mol-
ecules having 1372 and 2744 fluid molecules were stud-
ied. The first was a cube of edge 11.80 (o is the LJ length
scale), while the second had one of the sides, parallel to
the x axis, longer by a factor of 2. Two molecular walls
made up of 648 fixed molecules each on a fcc lattice with
the (100) surface exposed to the fluid were constructed
normal to the x direction. Periodic boundary conditions
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were applied in the two other directions. The simulations
were carried out at constant volume with a reduced fluid
density of 0.8. A fifth-order predictor-corrector scheme
with an integration time of 0.00257 was employed, where
r=(mo?/€)"?, m is the mass of the fluid molecule, and €
is the energy parameter of the fluid-fluid interaction. The
systems were equilibrated prior to the quench at T°=1.4.
After preparation, one-half of the molecules were selected
randomly and labeled A4, and the other half B, and the at-
traction between A4 and B was turned off. The system
was then evolved isothermally at T*=1.4 (the consolute
temperature of the binary fluid is approximately 8.0) by
rescaling velocities every time step. Note that this pro-
cedure is simpler than a quench corresponding to a sys-
tem cooled from the outside [3]—the complications of
heat flow and temperature inhomogeneities are avoided.

It is well known that fluids undergo layering near a
solid surface with molecular structure. The dynamics of
layering does not play a role in our simulations, since the
layers are well formed prior to the quench. Qualitatively
similar results were obtained in the two cases that we
considered: in both, the wall on the right had a purely
repulsive interaction with both fluids and thus no prefer-
ence for either fluid. In the first case the left wall was
similar to the right wall, whereas in the second it had a
regular LJ interaction with fluid 4 and a purely repulsive
interaction with fluid B. The deep quench employed in
MD leads to the phase separation being primarily driven
by the immiscibility of the two fluids rather than the
preference of the wall for one fluid over the other. Two
consequences of this are the relative insensitivity of the
results to the exact nature of the walls and the weak spa-
tial decay of the amplitude of the composition wave (Fig.
1) in contrast to the experimental observations [1].

The temporal decay of the wave vector (normal to the
surface), obtained as an average with weight S(k,?), of
the composition waves is shown in Fig. 2 for the two
kinds of walls, averaged over 20 systems each for the
larger system (similar results were obtained for the small-
er system). The time dependencies of three length scales
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FIG. 1. Typical density profiles for two different sizes in the
MD simulations. The wall on the left preferred fluid 4 and the
other wall was repulsive to both fluids. Oscillations associated
with layering have been removed using Fourier transform tech-
niques. g=p 4/(p 4 +pp). In the smaller system, the final state
is metastable—no further evolution takes place. Note the
resemblance to the experimental data in Ref. [1].
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FIG. 2. The wave vector of the composition waves as a func-
tion of time. The squares denote a system having one wall
preferring fluid 4 and the other wall repulsive to both fluids,
whereas the circles correspond to both walls being repulsive.
The data sets are an average over 20 runs each. The error bars
correspond to variations arising from differing initial condi-
tions. The X’s denote the results from the experiment (Ref.
[1]). The data were moved by arbitrary amounts in both the x
and y directions to obtain the best fit on the log-log plot.

obtained from the first three moments of the structure
factor S (k,t) are virtually the same, showing that there is
just omne length scale characterizing the composition
waves. While there is no clear algebraic behavior, the
temporal dependence is in accord with the experimental
data. Unlike bulk spinodal decomposition, the
phenomenon of composition waves is essentially one in-
volving boundaries. Our calculations have been carried
out until the wavelength of the composition wave be-
comes comparable to the system size. At this state, the
system remains stuck in a metastable state and little fur-
ther evolution takes place.

We now turn to the spin system. We briefly review the
derivation of the equations of motion. These are ob-
tained for the Ising reduced Hamiltonian

BH=-13K,,S,.S,—3h,S, , %)
X,y x

where K,,=K when x,y are nearest neighbors and
S, ==1, by making a Hubbard-Stratonovich transforma-
tion and writing the partition function

Z=Hffwdmxe'”"’i ,
X
with the effective Boltzmann weight given by [8]
Fim}=13¥m. K, m,—3V SK,m,+h, |, (2
x,y x y
with V(¢)=Incosh¢é. Note that the discrete lattice is

maintained while the discrete spin variable S, has been
replaced by m, that takes on values between — oo and

+ . Following Chandrasekhar [9], we derive a
Langevin equation for the dynamics of m:
m,=f.{m}+3g5 551, (3)
»a
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where we impose the conservation law that 3,72, =0 by 0.31
requiring that -
0.24 o
2= 2 8y by(0=0, @) oy,
x x,y,a dl@ © O
= 0.1 °Sam
where £7(¢) is a white noise (with a Gaussian probability z g, L
distribution), satisfying (£2(£)8(1'))=28,48,,8(t —1'). 2 L0 o
a=1,2,...,d, where d is the dimensionality. In order to e 7
obtain the correct equilibrium distribution with the —0.1 o, “ay
weight given by (2), we choose %, ™
°g,
_ a.a OF{m]} -0.2 . . . . s
fxim} 2288 om . 0.0 04 08 1.2 1.6 20
Y z,a ¥y
and log, (t)
gg = yx+a_5;a£ , (6) FIG. 3. Results for the Kawasaki spin dynamics: the time

where @ is a unit vector in the ath direction, 8% =1 if
x =y, and x —@ does not belong to the wall and zero oth-
erwise. With this choice Eq. (4) is satisfied. In the naive
continuum limit, Eq. (3) with the choice (5) and (6)
reduces to the standard model [2] B in the bulk for T near
T,. The key advantage of our approach is that it is now
straightforward to incorporate the boundary conditions
because of the discreteness of the lattice. Furthermore,
turning off the noise in (3) leads to a mean-field approach.
(Unlike PB, our equations are not restricted to the mean-
field limit.) In this limit, we recover the PB boundary
conditions on taking the naive continuum limit [4,5].
The continuous variables m allow for more efficient
averaging than the discrete Ising variables S. Note that
we have only one temperature, the one entering in Eq. (1).
We have numerically verified that the exact T, of model
(3) with f, given by (5) is the same as for model (1).

The two fluid phases are represented by the up and
down magnetization of the Ising model. The preferential
attraction of the wall for one fluid is readily incorporated
by choosing a nonzero fixed magnetization on the wall.
We have integrated the equations of motion in two di-
mensions, with and without noise and the boundary con-
dition m (—L /2)=1, m(L /2)=0; the walls are at +1 /2.
Composition waves are produced in both cases. The time
dependence of the wave vector is shown in Fig. 3. We
find that the noise term is crucial in preventing the sys-
tem from getting stuck in a metastable state at early
times. In contrast to the MD results, the behavior of the
Ising case with noise leads to an exponent increasing with
time reaching a value ~1. Analogous runs with periodic
boundary conditions lead to the expected exponent value
of 1, suggesting that the reduced value of ~1 is caused
by the presence of the walls. As in the MD simulations,
the time scale of the runs was long enough to reach a
metastable state in which the wavelength of the composi-
tion wave was comparable to the system size. Runs at
different quench depths are similar to each other at late
times.

Our results demonstrate the generality of occurrence of
composition waves as long as a wall is present and a con-
servation law is operational. Indeed, we will now argue
that such waves should be seen in even more general
circumstances—when the wall is replaced by a planar

dependence of the wave vectors of the composition waves for
the Ising spin systems of size 32X 8 with noise [quenched to a
coupling of 0.48 and 0.60 (squares and circles) averaged over
128 and 64 runs, respectively] and in a mean-field approxima-
tion [quenched to a coupling of 1 (dots)—the critical coupling
in mean field is equal to J—averaged over 32 initial condi-
tions].

heterogeneity in the initial condition. Our argument is
based on taking the continuum limit of the equations of
motion and neglecting higher-order terms in the magneti-
zation and its spatial derivatives. In this limit, valid near
T,, the Glauber (G) and Kawasaki (K) -type dynamics [2]
in suitably chosen units are given by

ﬁlG ’:Vsz—amG , (73.)
n"lngz(amK_—Vme) ) (7b)

with @ « T—T,. The neglected cubic terms in Egs. (7a)
and (7b) have a coefficient equal to 1 in the chosen units.
We choose the initial condition m(x,t,=0)=mye(x),
where e(x)=—1 for x <0 and e(x)=+1 for x >0. For
T>T, (a>0), the linearized equations yield the follow-
ing solutions:

dm(x,t) Mo = x2/a
—~—— G 8
dx Vot e (G), (8a)
2
dm(x,t) mgy e * /4at
e = = , at>>1(K). (8b)
dx Vit Va a

For T <T, (a <0), the initial m is chosen to satisfy
|my| <<V -‘FIF, to allow the neglect of nonlinear terms.
For the Glauber case, one finds that Eq. (8a) holds again
with @ <0 and at early times no composition waves
should be seen. This is in sharp contrast to the Kawasaki
dynamics, where one finds [10]

dm(x,t) Mo 1

1 4,2 k2
o ko Vi explkgt —x*/(16k§t)]

X[cos(kgx)
+3x sin(kyx)/16k3t)+0(1/t%)], )
where ky=V'|a|/2 and 8k3t >>1, showing the presence
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0.101 the equation
0.0Q-————sf\/\/— d?
m(x,t)=—T |———+a+m1) |m(x,1), (10)
0.08{————"\ /™ dx
0.07 N where the phenomenological parametera ~7T—T,, I'=1,
0.06 ™ and —d?/dx? for Glauber and Kawasaki dynamics, re-
« 0.05 —~ spectively, ;17=(1/L)fff/2 dx m3x,t), and L is
= the length of the one-dimensional system. The value of
< 0.04 m? is determined self-consistently. Equation (10) can
0.03 be solved in terms of the Fourier transform of
m(x,t), m(k,t)=fﬂ(k,0)exp{—‘y[(k2+a)t+q(t)]],
0.02 T where ¢(0)=0 and ¢(¢z)=m*(¢) and y =1,k? for Glauber
0.01 and Kawasaki dynamics. As before, for the step initial
condition and a <0, composition waves are found in the
0.00/ conserved case and not for Glauber dynamics with the re-
—0.0114 ( ‘ ‘ i sulting equations being of the form [(9) and (8a)], respec-
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FIG. 4. Comparison of the integration of the full equation of
motion (dots) and the analytic form (9) obtained in a linearized
approximation (solid line). The curves shown (from top to bot-
tom: t=200r,1807,1607, .. .,207) have been shifted for clarity.

of composition waves. Further, the wavelength of the
aymptotic mode corresponds to the fastest growing mode
in spinodal decomposition, in agreement with our numer-
ical results. We have also verified that composition
waves are indeed produced by direct numerical integra-
tion of the continuum version of the full nonlinear equa-
tions and that Eq. (9) is an excellent approximation for
t <2007, where 7 is the characteristic time scale (Fig. 4).
(It is important to note that while the composition wave
associated with the wall grows out from it, the wave here
is merely a transient density oscillation arising from the
initial condition.)

Furthermore, an exact solution of a simplified Berlin-
Kac [7] model taking into account the nonlinear terms
leads to the same conclusion. The model is described by

tively. Note that the Berlin-Kac model not only predicts
the dynamical behavior at intermediate times but also
produces the correct equilibrium limit at long times.
More details will be presented elsewhere.

In conclusion, we have demonstrated that composition
waves are generally produced when a binary mixture un-
dergoes spinodal decomposition in the presence of a pla-
nar inhomogeneity, as long as the total amount of each
fluid is conserved. The time dependence of the wave vec-
tor is found to be the same in molecular-dynamics simu-
lations of Lennard-Jones fluids and in the experiment of
Jones et al. [1] on polymer blends, but qualitatively
different in Ising spin systems demonstrating the impor-
tance of hydrodynamic modes. It is likely that the
phenomenon of composition waves will be useful for
tailoring composite materials with novel properties and
in biological applications [11].
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